f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,(继续上面的)若存在复数a使得f(a)=g(a)=0证明:f(x)|g(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 03:03:12
f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,(继续上面的)若存在复数a使得f(a)=g(a)=0证明:f(x)|g(x)

f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,(继续上面的)若存在复数a使得f(a)=g(a)=0证明:f(x)|g(x)
f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,
(继续上面的)若存在复数a使得f(a)=g(a)=0
证明:f(x)|g(x)

f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,(继续上面的)若存在复数a使得f(a)=g(a)=0证明:f(x)|g(x)
如果f不能整除g,那么设h(x)是g(x)用f(x)除后的非零余数多项式,即g(x)=f(x)f1(x)+h(x),则deg h任何一个复数a,如果一旦存在有理数多项式p(x),满足a是他的根.那么满足q(a)=0的有理数多项式里一定有个次数最低的(设为q(x)),这个是当然存在的,因为多项式次数是有下限的.
而且关键的是:剩下的所有满足p(a)=0的有理数多项式p(x),就都是q(x)的倍数.这个很容易证明.设有r(x)不是q(x)的倍数,且r(a)=0,则r(x)被q(x)除的非零余式多项式s(x)也满足s(a)=0,但这样一来,s的次数比q还要低,这就与q的次数最低的定义相矛盾了.所以,相当于这个a,有个以他为根的次数最低的“本原多项式”.
简单的说,设这个根a在有理数域的“本原多项式”是q(x),因为h(a)=f(a)=0,那么必定有q(x)|h(x),和q(x)|f(x).
因为deg q<=deg h,而且deg h这些推理里用到了多项式乘除法,对于有理数域是封闭性操作的性质,不过这个你应该都懂.

不知道

f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,(继续上面的)若存在复数a使得f(a)=g(a)=0证明:f(x)|g(x) 设f(x),g(x)为数域f上的不全为零多项式.证明[f(x),g(x)]=[f(x),f(x)+g(x)] 设f(x)是数域F上的2008次多项式,证明2009√2不可能是f(x)的根.在这里f(x)有可设f(x)是数域F上的2008次多项式,证明2009√2不可能是f(x)的根.在这里f(x)有可能是有理数,无理数,复数域多项式啊,怎么能 设f(x)=∑aix^i是有理域上的不可约多项式,证明f(x)的任意两个不同根之和不可能是有理数 设f(x),g(x),h(x)是实数域上的多项式.证明:若f(x)=xg(x)+xh(x)那么f(x)=g(x)=h(x)=0 f(x)与g(x)是定义在R上的两个多项式函数若f(x),g(x)满足条件f'(x)=g'(x),则f(x)与g(x)满足A f(x)=g(x) B f(x)-g(x)为常数函数C f(x)=g(x)=0 D f(x)+g(x)为常数函数 有限域上的多项式乘除法计算机我不太清楚是怎么计算的,看不太明白,例如GF(2)上多项式乘法F(X)=X7+X5+X4+X+1G(X)=X3+X+1F(X)*G(X)=?F(X)/G(X)=?上面X7表示X的7次方,其他类推不懂的就不要做了.不好意思, 证明有理数域Q上一元多项式环Q【x】的理想(2,x)是主理想 关于CRC校验生成多项式G(x).带有校验和的帧的多项式f(x).G(x)除f(x)得到余数多项式.我知道G(x)是相互预定的.那个f(x)是怎么产生的? 关于CRC校验66生成多项式G(x).带有校验和的帧的多项式f(x).G(x)除f(x)得到余数多项式.我知道G(x)是相互预定的.那个f(x)是怎么产生的? 关于CRC校验10生成多项式G(x).带有校验和的帧的多项式f(x).G(x)除f(x)得到余数多项式.我知道G(x)是相互预定的.那个f(x)是怎么产生的? f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1在有理数域、实数域上的不可约多项式乘积 数学多项式证明题证明(f(x).g(x))=(f(x) g(x).f(x)-g(x))f(x)和g(x)是不为零的多项式!证明(f(x).g(x))=(f(x) g(x).f(x)-g(x)) 设f(x)是A的特征多项式,若多项式g(x)与f(x)互素,则g(A)是V上的一个可逆线性变换 老师,这是考研题帮帮我 一个多项式的证明题:设整系数多项式f(x)对无限个整数值x的函数值都是素数,则 f(x)在有理数域上不可约. f(x),g(x)是整系数多项式,g(x)是本原,f(x)=g(x)h(x),h(x)是有理系数多项式,证明:h(x)是整系数的 f(x),g(x)是整系数多项式,g(x)是本原,f(x)=g(x)h(x),h(x)是有理系数多项式,证明:h(x)是整系数的 a=根号2加根号3,证明,存在有理数域上的不可约多项式f(x),使f(a)=0