设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α31.σ在基(α1,α2,α3)下的矩阵 2.σ可逆 3.求2σ-σ(﹣1)在(α1,α2,α3)下的矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/25 17:40:47
设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α31.σ在基(α1,α2,α3)下的矩阵 2.σ可逆 3.求2σ-σ(﹣1)在(α1,α2,α3)下的矩阵

设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α31.σ在基(α1,α2,α3)下的矩阵 2.σ可逆 3.求2σ-σ(﹣1)在(α1,α2,α3)下的矩阵
设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α3
1.σ在基(α1,α2,α3)下的矩阵 2.σ可逆 3.求2σ-σ(﹣1)在(α1,α2,α3)下的矩阵

设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α31.σ在基(α1,α2,α3)下的矩阵 2.σ可逆 3.求2σ-σ(﹣1)在(α1,α2,α3)下的矩阵
矩阵是(1,1,1; 0,1,1; 0,0,1)
可逆就不用我做了吧?
2σ-σ(-1)直接带入计算就行了

设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向量ξ关于前一组基的坐标是(n,n一1,...2,1).求ξ关于后一组基的坐标 设α1α2α3为向量空间v的一组基 σ是v的一个线性变换 并且σα1=α1,σα2=α1+α2,σα3=α1+α2+α31.σ在基(α1,α2,α3)下的矩阵 2.σ可逆 3.求2σ-σ(﹣1)在(α1,α2,α3)下的矩阵 a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为...a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为2 -1 2-1 2 -12 -1 2设向量t=a1+a2,求向量t的长度|t|=? 设二维欧式空间V的一组基为α1,α2,其度量矩阵(5,4 / 4,5),求V的标准正交基到α1,α2的过渡矩阵 e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1,α2,...,αnA线性无关 B线性相关 C是V上一组基 D以上都不正确 设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,(1)证明T^2=Ev,Ev是V上的单位变换(2)在V中找出一组正交基,使得T在该组基下的矩阵是对角矩阵 设α1,α2,α3是线性空间v的一组基(1)证明 β1=α1+α2+α3;β2=α1-α2+α3;β3=-α1+α2+α3也是v的基(2)求向量ξ=2α1-α2+5α3在基β1,β2,β3下的坐标需要详解 如题,设V是数域P上的一个3m(m>=1)维向量空间设V是数域P上的一个3m(m>=1)维向量空间,W是V的一个m维子空间,试构造V的一个线性变换σ,使得σ的核空间与σ^2的像空间均为W,并求σ的特征值 设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量求解第13题 设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs) 空间向量与平行关系!设向量U实施平面α的法向量,向量A是直线L的方向向量,判断直线L与α的位置关系.(1)向量U=(2,2,-1) 向量A=(-3,4,2)(2) 向量U=(0,2,-3) 向量A=(0,-8,12)设向量U,V分别是平面 设ε1,ε2,∧,εn是线性空间V的一组标准正交基,A是V上的线性变换,满足(Aα,Aβ)=(α,β),证明:Aε1,Aε2,L,Aε3是一组标准正交基. 设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,在V中找出一组标准正交基,使T在这组基下的矩阵是对角矩阵还需证明T^2=Ev,Ev是V上的单位变换 设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.1 -1 2-1 2 -12 -1 6(1)令γ=a1+a2,证明γ是一个单位向量(2)若β=a1+a2+ka3与γ正交,求k的值 高等代数 设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一高等代数设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一 向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间. 设A:V→U是向量空间V到U的线性映射,证明:1、A(0)=02、A(-α)=-A(α)3、A(α-β)=A(α)-A(β) 设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:W={α | (a,ai)=0,α∈ V ,i=1,2,...m}证明:W是V的一个子空间证明:W的正交补 =L(a1,12,...an)